Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(9): 2305-2323.e33, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38614099

RESUMEN

Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.


Asunto(s)
Complejo CD3 , Activación de Linfocitos , Linfocitos T , Escape del Tumor , Microambiente Tumoral , Animales , Complejo CD3/metabolismo , Complejo CD3/inmunología , Humanos , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología , Perros , Neoplasias/inmunología , Línea Celular Tumoral , Femenino , Unión Proteica , Proteína Tirosina Quinasa ZAP-70/metabolismo , Anticuerpos Neutralizantes/inmunología , Ratones Endogámicos C57BL
2.
Cell Rep Med ; 5(1): 101374, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232701

RESUMEN

LILRB4 is an immunosuppressive receptor, and its targeting drugs are undergoing multiple preclinical and clinical trials. Currently, the absence of a functional LILRB4 ligand in solid tumors not only limits the strategy of early antibody screening but also leads to the lack of companion diagnostic (CDx) criteria, which is critical to the objective response rate in early-stage clinical trials. Here, we show that galectin-8 (Gal-8) is a high-affinity functional ligand of LILRB4, and its ligation induces M-MDSC by activating STAT3 and inhibiting NF-κB. Significantly, Gal-8, but not APOE, can induce MDSC, and both ligands bind LILRB4 noncompetitively. Gal-8 expression promotes in vivo tumor growth in mice, and the knockout of LILRB4 attenuates tumor growth in this context. Antibodies capable of functionally blocking Gal-8 are able to suppress tumor growth in vivo. These results identify Gal-8 as an MDSC-driving ligand of LILRB4, and they redefine a class of antibodies for solid tumors.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Animales , Ratones , Ligandos , Neoplasias/terapia , FN-kappa B
3.
Front Cell Dev Biol ; 11: 1297211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188019

RESUMEN

Introduction: Cancer biomarkers are substances or processes highly associated with the presence and progression of cancer, which are applicable for cancer screening, progression surveillance, and prognosis prediction in clinical practice. In our previous studies, we discovered that cancer cells upregulate inositol 1,4,5-triphosphate receptor-interacting protein-like 1 (ITPRIPL1), a natural CD3 ligand, to evade immune surveillance and promote tumor growth. We also developed a monoclonal ITPRIPL1 antibody with high sensitivity and specificity. Here, we explored the application of anti-ITPRIPL1 antibody for auxiliary diagnosis of non-small cell lung cancer (NSCLC). Methods: NSCLC patient tissue samples (n = 75) were collected and stained by anti-ITPRIPL1 or anti-CD8 antibodies. After excluding the flaked samples (n = 15), we evaluated the expression by intensity (0-3) and extent (0-100%) of staining to generate an h-score for each sample. The expression status was classified into negative (h-score < 20), low-positive (20-99), and high-positive (≥ 100). We compared the h-scores between the solid cancer tissue and stroma and analyzed the correlation between the h-scores of the ITPRIPL1 and CD8 expression in situ in adjacent tissue slices. Results: The data suggested ITPRIPL1 is widely overexpressed in NSCLC and positively correlates with tumor stages. We also found that ITPRIPL1 expression is negatively correlated with CD8 staining, which demonstrates that ITPRIPL1 overexpression is indicative of poorer immune infiltration and clinical prognosis. Therefore, we set 50 as the cutoff point of ITPRIPL1 expression H scores to differentiate normal and lung cancer tissues, which is of an excellent sensitivity and specificity score (100% within our sample collection). Discussion: These results highlight the potential of ITPRIPL1 as a proteomic immunohistochemical NSCLC biomarker with possible advantages over the existing NSCLC biomarkers, and the ITPRIPL1 antibody can be applied for accurate diagnosis and prognosis prediction.

4.
J Immunother Cancer ; 9(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34341130

RESUMEN

BACKGROUND: The abnormal upregulation of programmed death-ligand 1 (PD-L1) in cancer cells inhibits T cell-mediated cytotoxicity, but the molecular mechanisms that drive and maintain PD-L1 expression are still incompletely understood. METHODS: Combined analyses of genomes and proteomics were applied to find potential regulators of PD-L1. In vitro experiments were performed to investigate the regulatory mechanism of PD-L1 by thyroid adenoma associated gene (THADA) using human colorectal cancer (CRC) cells. The prevalence of THADA was analyzed using CRC tissue microarrays by immunohistochemistry. T cell killing assay, programmed cell death 1 binding assay and MC38 transplanted tumor models in C57BL/6 mice were developed to investigate the antitumor effect of THADA. RESULTS: THADA is critically required for the Golgi residency of PD-L1, and this non-redundant, coat protein complex II (COPII)-associated mechanism maintains PD-L1 expression in tumor cells. THADA mediated the interaction between PD-L1 as a cargo protein with SEC24A, a module on the COPII trafficking vesicle. Silencing THADA caused absence and endoplasmic reticulum (ER) retention of PD-L1 but not major histocompatibility complex-I, inducing PD-L1 clearance through ER-associated degradation. Targeting THADA substantially enhanced T cell-mediated cytotoxicity, and increased CD8+ T cells infiltration in mouse tumor tissues. Analysis on clinical tissue samples supported a potential role of THADA in upregulating PD-L1 expression in cancer. CONCLUSIONS: Our data reveal a crucial cellular process for PD-L1 maturation and maintenance in tumor cells, and highlight THADA as a promising target for overcoming PD-L1-dependent immune evasion.


Asunto(s)
Aparato de Golgi/metabolismo , Inmunoterapia/métodos , Proteínas de Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Transfección , Regulación hacia Arriba
5.
Cancer Biol Med ; 17(3): 583-598, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32944392

RESUMEN

Cancer immunotherapy harness the body's immune system to eliminate cancer, by using a broad panel of soluble and membrane proteins as therapeutic targets. Immunosuppression signaling mediated by ligand-receptor interaction may be blocked by monoclonal antibodies, but because of repopulation of the membrane via intracellular organelles, targets must be eliminated in whole cells. Targeted protein degradation, as exemplified in proteolysis targeting chimera (PROTAC) studies, is a promising strategy for selective inhibition of target proteins. The recently reported use of lysosomal targeting molecules to eliminate immune checkpoint proteins has paved the way for targeted degradation of membrane proteins as crucial anti-cancer targets. Further studies on these molecules' modes of action, target-binding "warheads", lysosomal sorting signals, and linker design should facilitate their rational design. Modifications and derivatives may improve their cell-penetrating ability and the in vivo stability of these pro-drugs. These studies suggest the promise of alternative strategies for cancer immunotherapy, with the aim of achieving more potent and durable suppression of tumor growth. Here, the successes and limitations of antibody inhibitors in cancer immunotherapy, as well as research progress on PROTAC- and lysosomal-dependent degradation of target proteins, are reviewed.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Lisosomas/metabolismo , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Animales , Descubrimiento de Drogas , Humanos , Ligandos , Terapia Molecular Dirigida , Neoplasias/metabolismo
6.
Adv Exp Med Biol ; 1248: 431-453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185721

RESUMEN

Immune checkpoints are variegated stimulatory and inhibitory signals that are fundamental in immune homeostasis. The regulative molecules for immune checkpoints include programmed cell death protein 1 (PD1), programmed death-ligand 1 or 2 (PD-L1 or PD-L2), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and so on. While the immune checkpoint molecules have gained soaring attention in recent years, the trafficking of them has been rarely studied. Since all of the discovered immune checkpoint molecules are transmembrane domain (TMD) proteins, they share similar pathophysiological characteristics which make studies about their trafficking and associated disorders resembled. PD-L1 is one of the most classic immune checkpoint molecules, and anti-PD1 monoantibodies have shown promising immunotherapeutic effects. PD-L1 trafficking has been particularly studied, the key regulators of which include metformin, chemokine-like factor-like MARVEL transmembrane domain-containing family member (CMTM), Huntingtin-interacting protein 1-related (HIP1R), exosomes, ALIX, polyI:C, and various post-translational modifications. Here, we focus on the checkpoints under traffic control, counting PD-L1, CTLA-4, lymphocyte-activation gene 3 (LAG-3), killer immunoglobulin-like receptors (KIRs), CD70, CD94, and attempt to shed light on the potentials of drug targets based on these findings and look forward to further studies in combinatorial therapeutic regimens in the meantime.


Asunto(s)
Puntos de Control del Ciclo Celular , Inmunoterapia , Orgánulos/metabolismo , Transporte de Proteínas , Animales , Antígeno B7-H1/metabolismo , Puntos de Control del Ciclo Celular/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...